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Human factors/ergonomics

The following definition was developed by the International Ergonomics Association and has been adopted by the
Human Factors and Ergonomics Society:

Ergonomics (or human factors) is the scientific discipline concerned with the understanding of interactions among
humans and other elements of a system, and the profession that applies theory, principles, data and methods to
design in order to optimize human well-being and overall system performance. Ergonomists contribute to the
design and evaluation of tasks, jobs, products, environments and systems in order to make them compatible with

the needs, abilities and limitations of people.



Our research topics (last 2 years)

* Human-vehicle system
* Take-over interface design

Heavy machinery design
* Excavator controller design

Mobile devices
* Multi-device experience

Blockchain applications
 NFT marketplace user experience

Augmented reality systems
* AR interface design for supporting manual work tasks

Foldable displays
* Perception of foldable display quality

XAl

* Smart-chair based low back pain recognition system



Agenda

* To enhance the audience’s understanding of the human factors concept ‘trust’ in
the context of human-Al collaboration

* To present our group’s recent work on the comparative evaluation of different
explanation types for a smart chair-based low back pain telediagnosis system



Trust in human-Al collaboration



Lee, J. D, & See, K. A (2004). Trust in automation: Designing

for appropriate reliance. Human factors, 46(1), 50-80
Trust

* Trust, a social psychological concept, is important for understanding human-
automation (Al) partnerships.

* Trust can be defined as: “the attitude that an agent will help achieve an
individual’s goals in a situation characterized by uncertainty and vulnerability.”



Lee, J. D, & See, K. A (2004). Trust in automation: Designing
for appropriate reliance. Human factors, 46(1), 50-80

Appropriate trust in automation

Parasuraman, R., & Riley, V. (1997). Humans and automation:
Use, misuse, disuse, abuse. Human factors, 39(2), 230-253.

e Appropriateness of trust?
* ‘The relationship between the true capabilities of the agent and the level of trust’

* |Inappropriate reliance associated with misuse and disuse depends, in part, on
how well trust matches the true capabilities of the automation.

* Supporting appropriate trust is critical in avoiding misuse and disuse of
automation.



Lee, J. D, & See, K. A (2004). Trust in automation: Designing
H 1 H for appropriate reliance. Human factors, 46(1), 50-80.
Approprlate trust In automation )

Parasuraman, R., & Riley, V. (1997). Humans and automation:
Use, misuse, disuse, abuse. Human factors, 39(2), 230-253.
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Figure 2. The relationship among calibration, resolution, and automation capability in defining appropriate
trust in automation. Overtrust may lead to misuse and distrust may lead to disuse.



Lee, J. D, & See, K. A (2004). Trust in automation: Designing
Tr u St for appropriate reliance. Human factors, 46(1), 50-80.
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Figure 1. The interaction of context, agent characteristics, and cognitive properties with the appropriateness of trust.



Trust and explainability

* Explanation interface design is a key consideration for supporting appropriate

trust.

 Information displays must be designed to explain machine decisions/predictions

clearly and in an easy-to-understand manner.
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Kilgore, R., & Voshell, M. (2014). Increasing the transparency
of unmanned systems: Applications of ecological interface
design. In Virtual, Augmented and Mixed Reality. Applications
of Virtual and Augmented Reality: 6th International
Conference, VAMR 2014, Held as Fart of HC! International
2014, Heraklion, Crete, Greece, June 22-27, 2014,
Proceedings. Part Il 6 (pp. 378-389). Springer International
Publishing.

Explanation interface examples




Comparative evaluation of explanation interfaces for a smart-
chair based low back pain recognition system



Backgrounds

* Domain-specific XAl

Table 4. List of references to selected articles published on the methods of XAI from different
application domains for the corresponding tasks.

Domain Application/Task Study Count References
Domain agnostic Supervised tasks 23 [46—68]
Image processing 20 [25,69-87]
Decision support 13 [7,12,23,88-97]
Recommender system 4 [98-101]
Anomaly detection 1 [102]
Evaluation process 1 [103]
Natural language pro- 1 [104]
cessing
Predictive maintenance 1 [105]
Time series tweaking 1 [106]
| Healthcare Decision support 20 [107-126] i
! Risk prediction 4 [127-130] i
! Image processing 3 [131-133] i
' Recommender system 2 [134,135] H
b oo Anomalydetection 1 ___________| [136) . I
Industry Predictive maintenance 5 [137-141]
Business management 3 [142-144]
Anomaly detection 1 [145]
Modelling 1 [146]
Transportation Image processing 4 [147-150]
Assistance system 2 [151,152]
Academia Evaluation 3 [153-155]
Recommender system 1 [156]

Gerlings, J., Shollo, A., & Constantiou, 1. (2020). Reviewing the
need for explainable artificial intelligence (xAl). arXiv preprint
arXiv:2012.01007.



Jeong, H., & Park, W. (2020). Developing and evaluating a
mixed sensor smart chair system for real-time posture
classification: Combining pressure and distance sensors. [EEE

Joumnal of Biomedical and Health Informatics, 25(5), 1805-
BaCkgroundS 1313.30 omedical a ea 'ormatics, 25(5)

* Mixed sensor smart chair system for real-time posture classification
» Classifies a posture as one of 11 predefined sitting posture categories

Distance sensors

B Pressure sensors

D1 to D6: Distance sensors
P1 to P6: Pressure sensors

- - 2
(a) (b)

Fig. 2. Physical construction of the mixed sensor system: (a) place-
ment of sensors, and (b) distance and pressure sensors.

Eleven sitting posture categories



Backgrounds

* Smart chair for real-time posture classification
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Backgrounds

* Smart chair-based low back pain (LBP) recognition system
* An extension of the mixed sensor smart chair for real-time posture classification
» Classifies a user as either a chronic low back pain (CLBP) patient or a non-patient

* LBP
* The most common disorder worldwide (80% of the population)
e Causes enormous economic and social losses
* CLBP refers to LBP persisting for more than 3 months



Backgrounds

* Smart chair-based LBP recognition system
* The mixed chair smart chair system is used to generate a time sequence of sitting postures
while a user is performing computer typing for a one-hour time period.

* A binary classification model (the CLBP detector) classifies the user as either a CLBP patient
or a non-patient on the basis of the posture-time sequence.

* Machine learning (the CatBoost algorithm) was used to develop the binary classification model.
* The binary classifier utilizes a set of features:

» Relative frequencies of some posture categories

* Time changes in relative frequencies of some posture categories

* Number of posture categories observed during the one-hour time period



Backgrounds

* Smart chair-based low back pain (LBP) recognition system

TABLE V
PERFORMANCE OF CLBP CLASSIFICATION

Alsorithm Accuracy Precision Recall F1-score

: (%) (%) (%) (%)
CatBoost 78.3 95.0 76.6 81.3
XGBoost 71.6 85.0 75.0 73.3
Logistie 716 80.0 60.0 66.7
Regression
Decision Tree  68.3 70.0 65.0 63.3
Naive Bayes 65.0 75.0 58.3 61.7
Gradient 65.0 75.0 55.0 60.0

Boost




Research problem

* Research questions:
RQ 1) How can the CLBP recognition system’s diagnosis result be best explained to the user?

RQ 2) How do existing XAl methods (explanation types) compare in terms of XAl evaluation
metrics?



Experiment

* Participants:
22 males and 24 females
19 ~ 33 years old (24.7 + 3.4)

Each participant was assigned randomly to one of two groups (diagnostic output): the CLBP
patient group and the non-patient group

Different levels of Al/ML knowledge were represented

Gender Knowledge level
Types No Some Strong
Male (N) Female (N) ML/AI ML/AI ML/AI

background background background

CLBP 11 12 12 9

-2

Healthy 11 12 8 9 5

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------




Experiment

* Four local explanation types:

No explanation

Feature attribution explanation
Example-based explanation
Decision tree explanation

e XAl evaluation metrics:
* User experience metrics (5-point scales)

Understandability
Satisfaction
Sufficiency
Completeness
Usefulness
Perceived accuracy
Trustworthiness

e Cognitive load (9-point scale)

Pass’s cognitive load rating

Hoffman, R. R., Mueller, 5. T, Klein, G, & Litman, J. {2018).
Metrics for explainable Al: Challenges and prospects. arXiv
preprint arXiv:1812.04608.

Paas, F. G. (1992). Training strategies for attaining transfer of
problem-solving skill in statistics: a cognitive-load approach.
Journal of educational psychology, 84(4), 429.



Experiment

* Experimental procedure:

* Introduction session:
* The purpose and procedure of the experimental study were described

* Learning session:
* The definition and characteristics of CLBP were provided
* How the smart chair-based CLBP recognition system works was explained
* The three explanation methods were explained

* Experimental trials:
* The interface prototypes for the different explanation methods were presented

* The participants took enough time to examine and interpret the interface prototypes, and, then,
performed subjective ratings (UX and cognitive load)

* The presentation order of the four explanation types was randomized for each participant, with
complete counter balancing



Explanation interface prototypes
(diagnostic output: ‘CLBP patient’)

* No explanation

o
a2

g 2§ ExtLct,




Explanation interface prototypes

(diagnostic output: ‘CLBP patient’) uyHH

* Feature attribution explanation L[]

8, Ot apy) s}

ApM) s

4, 54 2ty

ELE ]

10, 118 Ap4)
a

8, 9 2ty

09 -08 -0.7 -0.6 -0.5 -0.4 0.3 -0.2 -0.1 0.0 01 02 03 04 05 06 07

WE e
gL ‘

orq Q& BIXPRILICE E N ™
' 18 |

2H T

A

4, 58 XpA|

68 Al

7 XA
8, 9% XA

10, 118 XpA|

24 &pu st

8, Ot XA st
10, 114 XpA] 12}
AP it Y




Explanation interface prototypes
(diagnostic output: ‘CLBP patient’)

* Example-based explanation
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Explanation interface prototypes ‘
(diagnostic output: ‘CLBP patient’) wWwHH

* Decision tree explanation olAELIR
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Explanation interface prototypes
(diagnostic output: ‘non-patient’)

* No explanation




Explanation interface prototypes
(diagnostic output: ‘non-patient’)

.L,_\Lf_; HH

* Feature attribution explanation 2 7|0iE

8, 98 ZpH|

10, 113 24
L

=

8, 9% Ap| HEH
M| HEf e
7 24|

2 M| st

38 24|

e

4, 59 24|

=05 -03 -01 0.1 03 0.5

o ¥3 o

150 ZRM|

2 2|

39 24|

4, SH |

6 A4l

TH A

8, 9tH ZpA|

10, 119 ZbM|
2'H A s}

8, 9tH ZpA| 3}
10, 11 Xpd| st
T gt




Explanation interface prototypes
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Explanation interface prototypes o
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Experiment

e Experimental variables:

* Independent variables:
* Explanation type: no explanation, feature attribution, example-based and decision tree
* Group (diagnostic output): CLBP patient, non-patient
 Dependent variables:
* 7 UX measures
e Cognitive load rating

e Data analysis:
* ANOVAs
* Post-hoc pairwise comparisons



Results

* ANOVA results

Evaluation Group Explanation Group*Explanation
Index F-value p-value F-value p-value F-value p-value
Understandability F(l 44) =146 0.234 F(3 132)=57.67  =<0.001 F (3 132) =107 0.358
Satisfaction F(l, 44) =281 0.101 F (3, 132)=2250 = 0.001 F (3,6 132) =064 0.580
Sufficiency F (1, 44) = 4.02 0.051 F(3 132)=4250  <0.001 F (3, 132) = 0.64 0.581
Completeness F(l, 44) = 1.59 0.214 F(3 132)=2500  <0.001 F (3, 132) = 0.64 0.574
Usefulness F (1 44) 0.97 0.346 F(3 132)=2482  <0.001 F(3 132) =078 0.505
Perceived accuracy F(l,44) =064 0428 F (3, 132) =6169 = 0.001 F(3, 132} =148 0.225
Trustworthiness F (1, 44) = 0.04 0.849 F(3 132) =4806  <0.001 F (3, 132) = 2.83 0.041
Cognitive load F(l, 44) =026 0.614 F(3 132)=34.08  <0.001 F (3, 132) =116 0.328




Results

e ‘Explanation type’ main effects: UX measures
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Results

e ‘Explanation type’ main effects: UX measures
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Results

* ‘Explanation type’ main effects: cognitive load
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Results

* ‘Explanation type x group (diagnostic output)’ interaction effect: perceived
trustworthiness (trust)
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Discussion

 Compared with no explanation, the three explanation types resulted in better
user responses. This indicates that the existing XAl methods are useful.

* Overall, decision tree explanation appeared more advantageous compared with
the other alternatives.

* Decision tree explanation was found to be significantly better than the other alternatives in
terms of understandability.

e Decision tree explanation also resulted in a significantly lower mean cognitive load score than
example-based explanation.



Discussion

* Decision tree explanation was found to be significantly better than the other
alternatives in terms of understandability. This may be because:

* People are already familiar with the use of “IF ¥ THEN ~” rules in describing a decision
process.

* Asetof “IF~ THEN~" rules (decision tree explanation) fully and directly describes how a
decision is made. On the other hand, feature attribution and example cases do not. They are
indirect at best in describing a decision process.

* Understanding the notions, feature importance and example cases, requires some mental
models associated with Al/ML methods.

* When using decision tree explanation, one only needs to process one “IF ¥ THEN ~” rule at a
time — a decision process can be broken down into a series of easy-to-process rules. On the
other hand, feature attribution explanation requires integrating multiple feature importance
values. Example-based explanation also requires comparing the case of interest with each of
the examples presented in the multi-item vector representation. Such mental integration is
demanding and would compromise understandability.



Discussion

* Decision tree explanation also resulted in a significantly lower mean cognitive

load score than example-based explanation. Again, this could be explained on the
basis of differences in human information processing requirements:

 When using decision tree explanation, one only needs to process one “IF ~ THEN ~” rule at a
time — a decision process can be broken down into a series of easy-to-process rules. Example-
based explanation also requires comparing the case of interest with each of the examples

presented in the multi-item vector representation. Such mental integration is demanding and
thus increases cognitive loads.



Discussion

* The ‘explanation type x group (diagnostic output)’ interaction effect on perceived
trustworthiness (trust) was statistically significant, indicating that the utility of a
particular explanation type may change according to what the machine diagnosis
is. However, the interaction effect was rather small.

 This finding seems to suggest that the utility of a particular explanation type/method would
change according to a machine decision (diagnosis) and its implications. This warrants further
investigations.



Discussion

* Whilst the explanation types considered were found to be useful compared with
‘no explanation,” their mean ratings were not great. For the UX measures, none of
the mean values were greater than 4 on the 5-point scale. Also, the mean
cognitive load scores were greater than 4 on the 9-point scale. There is room for
improvement.

* The explanations based on the existing XAl methods may not address the real information
needs of the users in the particular context of a smart-chair based CLBP recognition system.

* Pre-determining user information needs based on existing XAl methods may not be effective.
A better approach might be to discover user explanation needs specific to each particular Al
application context through some systematic contextual inquiry and analysis.



Conclusions

* Overall, the existing XAl methods were found to be useful. Especially, decision
tree based explanation seemed better than feature importance and example-
based explanations.

* Despite their utility, however, the existing XAl methods and the information they
provide may not fully address the users’ information needs.

* Methods for identifying the user information needs specific to each particular Al
application (e.g., telediagnosis) domain are needed.
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